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Apoptotic cell death pathways have been implicated in acute brain injuries, including cere-

bral ischemia, brain trauma, and spinal cord injury, and in chronic neurodegenerative dis-
eases. Experimental ischemia and reperfusion models, such as transient focal/global
ischemia in rodents, have been thoroughly studied and suggest the involvement of mito-

chondria and the cell survival/death signaling pathways in cell death/survival cascades.
Recent studies have implicated mitochondria-dependent apoptosis involving pro- and anti-
apoptotic protein binding, the release of cytochrome c and second mitochondria-derived

activator of caspase, the activation of downstream caspases-9 and -3, and DNA fragmenta-
tion. Reactive oxygen species are known to be significantly generated in the mitochondrial
electron transport chain in the dysfunctional mitochondria during reperfusion after ische-
mia, and are also implicated in the survival signaling pathway that involves phosphatidyl-

inositol-3-kinase (PI3-K), Akt, and downstream signaling molecules, like Bad, 14-3-3, and
the proline-rich Akt substrate (PRAS), and their bindings. Further studies of these survival
pathways may provide novel therapeutic strategies for clinical stroke.
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ISCHEMIC APOPTOSIS SIGNALING

PATHWAY INVOLVING MITOCHONDRIA

The cell death signaling pathway in mitochon-
dria has recently been demonstrated in the ischemic
brain with the release of mitochondrial cytochrome
c, a water-soluble peripheral membrane protein of
mitochondria and an essential component of the

mitochondrial respiratory chain (Fig. 1). Cyto-
chrome c is translocated from mitochondria to the
cytosolic compartment after transient focal cerebral
ischemia (tFCI) in rats (1), in brain slices that are
subjected to hypoxia-ischemia (2,3), and in vulnera-
ble hippocampal CA1 neurons after transient global
cerebral ischemia (4). Mitochondria are known to
be involved in both the necrosis and apoptosis path-
ways, which depend on severity of the insult or the
nature of the signaling pathways (5–8). In most
instances, severe cerebral ischemia renders the mito-
chondria completely dysfunctional for adenosine tri-
phosphate production, which ensures necrotic cell
death. In contrast, various in vitro studies demon-
strate that cellular or biochemical signaling path-
ways involve mitochondria in apoptosis by releasing
cytochrome c to the cytoplasm. Cytochrome c
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interacts with the CED-4 homolog, Apaf-1, and de-
oxyadenosine triphosphate, forming the apoptosome
and leading to activation of caspase-9 (9–12). Cas-
pase-9, which is an initiator of the cytochrome c-
dependent caspase cascade, then activates caspase-3,
followed by caspases-2, -6, -8 and -10 activation
downstream (13). Caspase-3 also activates caspase-
activated DNase and leads to DNA damage. In
cerebral ischemia studies, caspases-3 and -9 have
also been shown to play a key role in neuronal
death after ischemia (14–16). Caspase-11 is also a
critical initiator of caspases-1 and -3 activation, and
caspase-11 knockout (KO) animals have shown
reduced apoptosis after focal ischemia (17). Since
caspase-11 is an upstream activator of caspase-1 in
cytokine maturation, involvement of cytokines in
apoptosis should also be considered after cerebral
ischemia. The downstream caspases cleave many
substrate proteins including poly(ADP-ribose) poly-
merase (PARP) (15,16,18). Substrate cleavage
causes DNA injury and subsequently leads cells to
apoptotic cell death, but excessive activation of
PARP causes depletion of nicotinamide-adenine
dinucleotide and adenosine triphosphate, which ulti-
mately leads to cellular energy failure and death.
Consistent with these notions, PARP KO mice
showed decreased infarct after transient middle cere-
bral artery occlusion (MCAO) (19). A recent study
has further demonstrated the role of PARP in the
release of apoptosis-inducing factor from mitochon-

dria and subsequent translocation to the nucleus for
DNA damage and apoptosis (20).

Conversely, there are proteins that can prevent
caspase activation in the cytosol. The inhibitor-of-
apoptosis protein (IAP) family suppresses apoptosis
by preventing activation of procaspases and also by
inhibiting enzymatic activity of active caspases
(21,22). The second mitochondria-derived activator
of caspase (Smac) is also released by apoptotic stim-
uli and binds IAPs, thereby promoting activation of
caspase-3 (23). A recent study showed that mitochon-
drial release of cytochrome c and Smac preceded cas-
pase activation after global ischemia, suggesting the
importance of IAP inhibition as well as caspase acti-
vation (14). It is important to point out that these cell
death signaling pathways are regulated by reactive
oxygen species and the redox state of the cell during
cerebral ischemia and reperfusion. Overexpressed
cytosolic copper/zinc-superoxide dismutase (SOD1)
in mice or rats significantly reduces the cell death sig-
naling pathways involving cytochrome c and Smac
release, activation of caspase-9 and caspase-3, bind-
ing of Smac and IAP, PARP activation and DNA
fragmentation; whereas a deficiency in either SOD1
or mitochondrial manganese-SOD significantly exac-
erbates these cell death signaling pathways
(4,5,14,24–30). These data suggest that both oxida-
tive stress and the redox state play a role as a molecu-
lar switch for cell death or survival in apoptosis
during cerebral ischemia and reperfusion.

Fig. 1. Intrinsic mitochondria-dependent pathway of apoptosis in cerebral ischemia and reperfusion. AIF, apoptosis-inducing factor;
CAD, caspase-activated DNase.
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PRO- AND ANTI-APOPTOTIC PROTEINS

THAT ARE ASSOCIATED WITH

MITOCHONDRIAL-DEPENDENT

APOPTOSIS/SURVIVAL

The Bcl-2 family proteins have one or more
Bcl-2 homology domains and play a crucial role in
intracellular apoptotic signal transduction by regu-
lating permeability of the mitochondrial membrane
(31). Although still controversial, many researchers
believe that mitochondrial cytochrome c is released
through the permeability transition pore (PTP), and
that Bcl-2 family proteins directly regulate the PTP
(32). Among these proteins, Bax, Bcl-XS, Bak, Bid
and Bad are pro-apoptotic. They eliminate the
mitochondrial membrane potential by affecting the
PTP and facilitating cytochrome c release (33). Con-
versely, Bcl-2 and Bcl-XL function to conserve the
membrane potential and block the release of cyto-
chrome c. As expected, after focal cerebral ischemia,
a decreased infarct was observed in transgenic mice
that overexpress Bcl-2 (34) and in Bid KO animals
(35), whereas, Bcl-2 KO mice showed an increased
infarct (36). These findings, especially in the studies
using pro-apoptotic/anti-apoptotic protein-trans-
genic/KO animals (Table I), suggest the importance
of mitochondrial permeability regulation and Bcl-2
family proteins in ischemic cerebral injury.

Among the pro-apoptotic proteins, Bad, an
important member of the Bax family, links the
upstream cell survival signaling pathway and the
downstream pathway to inactivate anti-apoptotic

Bcl-2 family proteins (37). In vitro studies show that
Bad resides in an inactive complex with the molecu-
lar chaperone 14-3-3 via the phosphorylation of
four serine residues (Ser-112, -136, -155, -170) (38).
With apoptotic stimuli, Bad is dephosphorylated,
dissociated from 14-3-3, and translocated to the
outer membrane of the mitochondria, where it sub-
sequently dimerizes with Bcl-XL and promotes mito-
chondrial cytochrome c release (38). Ser-155 residue
is important for the direct interaction between Bad
and Bcl-XL and its phosphorylation is regulated by
several upstream signaling pathways. After cerebral
ischemia, dephosphorylation and translocation of
Bad from the cytosol to the mitochondria are
observed and dimerization of Bad progresses with
Bcl-XL in the early stages after MCAO (39). These
results suggest the pivotal function of Bad in ische-
mic cell death.

PHOSPHATIDYLINOSITOL-3-KINASE/AKT

AS SURVIVAL SIGNALING PATHWAYS

There are several pathways to the inhibition of
the pro-apoptotic function of Bad. Ras is thought
to play a central role in signaling for growth factor-
mediated resistance to apoptosis (40). Recent stud-
ies have shown that pharmacological blockade of
Ras results in inhibition of the protective effects of
ischemic preconditioning in primary cultures, and
conversely, overexpression of Ras by transfection
provides protection for cultured ischemic neurons

Table I. Transgenic and Knockout Studies of Pro-Apoptotic and Anti-Apoptotic Proteins

Study Insult Findings Reference

Bid )/) Transient MCAO Decreased infarct ()67%) (35)
Bcl-2 Tg Permanent MCAO Decreased infarct ()50%) (34)
Bcl-2 Tg Global ischemia Decreased injury (54)
Bcl-2 Tg Permanent MCAO No protection (55)
Bcl-2 Tg Permanent MCAO Decreased injury (56)
Bcl-2 )/+, )/) Transient MCAO Increased infarct (36)
Bcl-XL Tg Permanent MCAO Decreased infarct ()21%) (55)
Caspase-1 NM Transient MCAO Decreased infarct ()44%) (57)
Caspase-1 NM Permanent MCAO Reduced injury (58)
Caspase-1 )/) Permanent MCAO Reduced injury (59)
Caspase-1 )/) Transient MCAO Decreased infarct (60)
Caspase-11 )/) Permanent MCAO Reduced apoptosis (17)
PARP )/) Transient MCAO Decreased infarct (61)
PARP )/) Transient MCAO Decreased infarct in chronic stage (62)
Fas NM Transient MCAO Decreased infarct (63)
TNFR (p55 & p75) )/) Transient MCAO Increased injury (64)
TNFR (p55 & p75) )/) Transient MCAO Increased injury (65)
p53 )/+, )/) Permanent MCAO Decreased infarct ()27%, )15%) (66)

Tg, transgenic; NM, negative mutant; TNFR, TNF-receptor-a.
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(41). Ras can directly activate phosphatidylinositol-
3-kinase (PI3-K), an upstream effector for activa-
tion of Akt. Akt is an initiator of the downstream
pathways that inhibit the apoptotic pathways. Akt
phosphorylates Bad and obviates its inhibitory
effects on Bcl-XL, ultimately inhibiting the release
of cytochrome c by blocking channel formation by
Bax on the mitochondrial membrane (40). Akt also
inhibits proteolytic activity of caspase-9 by phos-
phorylating it on Ser-196 (42). In addition, Akt can
translocate into the nuclei and inactivate a pro-
apoptotic member of the Forkhead family of
transcription factors by phosphorylation, thereby
inhibiting activation of the Fas pathway of apopto-
sis (43). Mitogen-activated protein kinase (MAPK)
family members play a critical role in the regulation
of cell growth, differentiation and cellular response
to cytokines and stress (44). One MAPK-family
member, extracellular signal-regulated kinase
(ERK), has two isoforms (ERK1/2), which are con-
stitutively expressed in the normal brain (45) and
are activated by MAPK/ERK kinase 1/2. In this
pathway, Ras recruits the main effector, Raf-1,
to activate MAPK/ERK kinase 1/2 (46). Active
ERK1/2 inactivates Bad through phosphorylation
of 90-kDa ribosomal S6 kinases (47). Transforming
growth factor-b1 has been shown to suppress Bad
activity by phosphorylation of Bad at the Ser-112
site via activation of the ERK pathway in both

in vivo cerebral ischemia models and in vitro studies
(48). Phosphorylation of ERK1/2 is involved in
apoptosis and cell death after transient MCAO (49).
Phosphorylation of the Ser-155 residue in Bad is
regulated by protein kinase A (PKA) in studies
in vitro (50). In rodent focal cerebral ischemia mod-
els, intraventricular injection of a PKA inhibitor,
H89, effectively suppressed PKA activity (51) and
dimerization of Bad/Bcl-XL, and subsequently,
apoptotic cell death (39). This cumulative evidence
suggests that Akt, ERK1/2 and PKA pathways
inhibit the function of Bad as a cell survival signal-
ing pathway after cerebral ischemia.

Besides Bad survival signaling, PI3-K/Akt is
also involved in many other survival signaling path-
ways. One such pathway includes MDM2/p53 (52).
Also, a novel proline-rich Akt substrate (PRAS)
was recently detected and found to be involved in
apoptosis. We have found that PRAS is phosphory-
lated by Akt in surviving cortical neurons and that
phosphorylated PRAS (pPRAS) and the binding of
pPRAS phosphorylated Akt (pPRAS/pAkt) to 14-
3-3 (pPRAS/14-3-3) were altered, and their expres-
sion briefly decreased in mouse brains after tFCI.
Liposome-mediated pPRAS cDNA transfection
induced overexpression of pPRAS, promoted
pPRAS/14-3-3, and inhibited apoptotic neuronal
cell death after tFCI. The expression of pPRAS,
pPRAS/pAkt and pPRAS/14-3-3 increased in nerve

Fig. 2. Life and death signaling in ischemic neurons involving mitochondria and the PI3-K/Akt pathway. PKB, protein kinase B; SOD2,
manganese-superoxide dismutase.
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growth factor (NGF)-treated mice, but decreased
with inhibition of PI3-K and the NGF trkA recep-
tor after tFCI. These results suggest that PRAS
phosphorylation and its interaction with pAkt and
14-3-3 might play an important role in neuroprotec-
tion mediated by NGF in anti-apoptotic neuronal
cell death after tFCI. Further studies have also
shown that oxidative stress is also involved in mod-
ulating the expression of pPRAS, pPRAS/pAkt,
and pPRAS/14-3-3 binding (53), again suggesting
that the PI3-K/Akt survival signaling pathway is
upregulated by SOD1 overexpression (Fig. 2).

We now propose that mitochondria and the
PI3-K/Akt signaling pathway are the determinants
controlling pro-apoptosis and anti-apoptosis in
ischemic neurons during stroke. Further studies of
the survival signaling pathways may provide novel
therapeutic strategies for clinical stroke.
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