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Many disorders of the CNS, such as multiple sclerosis
(MS), are characterized by the loss of the myelin sheath
surrounding nerve axons. MS is associated with infiltra-
tion of inflammatory cells into the brain and spinal cord,
which may be the primary cause of demyelination or
which may be induced secondary to axonal damage. Both
the innate and adaptive arms of the immune system have
been reported to play important roles in myelin destruc-
tion. Numerous murine demyelinating models, both vi-
rus-induced and/or autoimmune, are available, which re-
flect the clinical and pathological variability seen in
human disease. This review will discuss the immuno-
pathologic mechanisms involved in these demyelinating
disease models. The Journal of Immunology, 2006, 176:
3293–3298.

T he axons of many vertebrate neurons are surrounded by
a myelin sheath, which increases the speed at which the
axon can conduct electrical impulses. Numerous in-

flammatory and metabolic disorders of the nervous system re-
sult in loss of the myelin sheath, with symptoms ranging from
speech and visual disturbances to paralysis. Many of these dis-
orders are associated with immune infiltrates into the nervous
system, normally considered to be an immunologically privi-
leged site. These inflammatory infiltrates may be the primary
cause of the demyelination; alternatively, infiltrates may amass
at sites of prior injury and contribute to progressive tissue dam-
age. Multiple sclerosis (MS) is the most prevalent human de-
myelinating disease of the CNS (1). The loss of myelin in MS is
thought to be autoimmune in nature because it is associated
with elevated levels of CD4� T cells specific for the major my-
elin proteins (2–4), as well as with the presence of myelin-spe-
cific Abs (5, 6).

Genetic and environmental factors (particularly exposure to
virus or bacterial infections) are postulated to interact to varying
degrees depending on disease type to initiate autoimmune de-
myelination. The many described murine models of CNS de-

myelination reflect the diversity of clinical manifestations in
humans. Although none are exact replicates of the human dis-
ease, they share many similarities and have provided insight into
the pathobiology of the human diseases they model.

Experimental autoimmune encephalomyelitis (EAE)

EAE is a frequently studied autoimmune model of MS. EAE is
induced in mice by active priming with whole myelin proteins
or specific myelin peptide epitopes in adjuvant; the specific my-
elin epitopes able to induce EAE varies with the strain of mouse
used. Demyelination and paralytic episodes are associated with
infiltration of myelin-specific inflammatory Th1 CD4� T cells
into the CNS (7). EAE can also be induced by adoptive transfer
of myelin-specific CD4� T cells, confirming the importance of
T cells in disease induction (8). The symptoms of EAE in mice
are varied and mimic different clinical manifestations seen in
human MS (9). Disease can be monophasic, involving an acute
paralytic episode followed by complete recovery; relapsing-re-
mitting, which involves multiple cycles of attack interspersed by
full or partial recovery; or chronic, where disease symptoms of
the initial attack either stabilize at peak levels or gradually
worsen over time. In the monophasic and relapse-remitting
forms, recovery from disease is associated with clearance of in-
flammatory infiltrates from the CNS. Susceptibility to either
the monophasic or relapse-remitting subtypes has been mapped
to distinct genetic loci (10). Similarly, studies suggest that these
two MS disease subtypes are genetically distinct entities (11, 12).

A primary hallmark of the relapsing-remitting and chronic
subtypes of EAE is the phenomenon of epitope spreading,
which is the diversification of the initial immune response, sec-
ondary to acute myelin destruction, to include reactivity to en-
dogenous CNS determinants (13). In EAE, spreading can occur
to different epitopes within the same myelin protein used to
initiate the disease (intramolecular spreading) or to epitopes
within a different myelin protein (intermolecular spreading).
For example, there is a sequential and hierarchical order of
epitope spreading seen in the relapse-remitting disease of SJL
mice primed with PLP139–151 (myelin proteolipid protein)
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(14). The first relapse is associated with Th1-type CD4� T cell
reactivity to PLP178–191 and the second to MBP84–104 (myelin
basic protein). Myelin destruction during the acute disease ep-
isode creates an inflammatory environment, leading to the in-
filtration of peripheral myeloid dendritic cells (DCs) to the
CNS, which locally present endogenously acquired myelin
epitopes to naive T cells (15). In both SJL and (SWR � SJL)F1

EAE models, tolerance to the primary spread epitope after in-
duction of EAE prevented relapses and/or disease progression
(16, 17). However, using a mouse transgenic for a single mye-
lin-specific TCRs, Jones et al. (18) showed that disease relapses
could occur in the absence of reactivity to spread epitopes.
Epitope spreading has been shown in mice double transgenic
for human TCR and MHC class II molecules associated with
susceptibility to MS (19, 20). The ability to clearly assess the
role of epitope spreading in MS is hampered somewhat by the
heterogeneity of the disease and time it takes for disease pro-
gression in humans. A recent study showed that patients with
long-term disease recognized more myelin epitopes than those
with recent-onset disease, but there was no certain correlation
between number of epitopes recognized and disease severity
(21). This supports previous studies demonstrating epitope
spreading in MS patients (22, 23).

Theiler’s murine encephalomyelitis virus (TMEV)-induced
demyelinating disease

TMEV is a natural mouse pathogen than can cause CNS de-
myelination in susceptible mouse strains. TMEV is an appeal-
ing model to study the potential role of pathogenic agents in the
development of MS. Numerous epidemiological studies have
shown a link between the environment and MS development
(24–26), and MS relapses are often preceded by infections (27,
28). Although most reports linking infection with MS are cir-
cumstantial, efforts are ongoing to identify specific pathogens
that may be important in disease development. In one study,
Ags derived from human herpesvirus type 6 were found in MS
plaques but not in tissues from patients with other neurological
conditions (29). In another, cerebrospinal fluid (CSF) from MS
patients was reported to show a marked increase in levels of the
intracellular bacteria Chlamydia pneumoniae as compared with
CSF from patients with other neurological diseases (30). The
significance of these observations to MS initiation remain to be
determined.

There are two subgroups of TMEV. One subgroup causes an
acute and often fatal encephalitis, and the other causes and ini-
tial acute gray matter disease followed by a chronic progressive
demyelination in the white matter of the spinal chord known as
TMEV-induced demyelinating disease (TMEV-IDD)
(31–33). The latter subgroup (Thieler’s Original) is made up of
TMEV-Daniel’s strain and TMEV-BeAn; although the in-
duced disease is slightly different depending on which strain is
used, they key characteristics remain the same. Intracerebral
(i.c.) injection of virus leads to persistent CNS infection in sus-
ceptible mouse strains. Although the level of infectious virus is
low during the chronic phase, abundant amounts of viral RNA
and viral Ag can be detected throughout the lifetime of the
mouse (34–36). Importantly, TMEV-IDD is characterized by
immune infiltration into the CNS that is responsible for the
demyelination and resulting clinical symptoms (abnormal gait
and spastic hindlimb paralysis). The immune response is initi-
ated by the presentation of persistent viral Ags by CNS-resident

APCs to Th1-type CD4� T cells (37). Proinflammatory cyto-
kines released by these T cells recruit monocytes and macro-
phages into the CNS, which cause damage to myelin. This sub-
sequent release of myelin Ags and uptake by APCs lead to the
emergence of myelin-specific CD4� T cells. Initial studies
showed that immune responses to TMEV were detectible 5–7
days postinfection but that reactivity to myelin did not appear
until after the onset of clinical symptoms (30–35 days postin-
fection) (15, 38–40). Thus, the chronic phase of TMEV-IDD
is autoimmune caused by epitope spreading from viral determi-
nants to self-myelin determinants. Tolerance to multiple mye-
lin proteins after virus infection significantly inhibits TMEV-
IDD, which demonstrates the importance of the myelin-
specific immune response in disease progression (41). In SJL
mice, reactivity appears to multiple myelin epitopes starting
with the immunodominant epitope PLP139–151 and spreading at
later time points to other subdominant myelin determinants in a
hierarchical manner similar to what is seen in EAE (15, 37, 42).

Recombinant TMEV model of molecular mimicry-induced
demyelination

Among the ways in which a virus may trigger autoimmune re-
actions, molecular mimicry is the mechanism most often pro-
posed. Molecular mimicry involves immunological cross-reac-
tivity between self-epitopes and epitopes from a foreign
pathogen. Activated MBP-specific T cells have been found in
MS patients (43–45); the subsequent identification of patho-
gen-derived mimics capable of activating human MBP-specific
T cell lines reinforces the theory that pathogens may induce MS
via molecular mimicry (46, 47). Pathogen-derived mimics ca-
pable of cross-activating murine MBP-specific T cells have also
been identified, including several mimics capable of inducing
EAE in mice transgenic for an MBP-specific TCR (48, 49).

In the first attempt to create a murine model of infection-
induced CNS disease via mimicry, vaccinia virus was engi-
neered to express rat PLP (VVplp) (50). Although disease could
not be directly induced by infection with this recombinant vi-
rus, VVplp-infected mice later challenged with encephalito-
genic myelin peptides had enhanced EAE-type disease as com-
pared with mice infected with control vaccinia virus. Later, we
infected SJL mice with rTMEV engineered to express the im-
munodominant SJL myelin epitope PLP139–151 (PLP-TMEV)
(51). Mice infected with this virus developed a demyelinating
disease that was early onset (7–10 days postinfection) as com-
pared with wild-type TMEV (30–40 days). This early onset
was associated with inflammatory PLP13–151-specific CD4� T
cell responses that arose concomitantly with responses to the
virus epitopes around day 7–14 postinfection. Hence, in con-
trast to wild-type TMEV, where disease is the result of epitope
spreading from virus to myelin Ags, disease in the rTMEV is a
result of initial priming of myelin-specific T cells. Another rT-
MEV was constructed using a previously identified mimic
epitope of PLP139–151 derived from the bacteria Haemophilus
influenzae (HI-TMEV) (52, 53). Mice infected with HI-
TMEV also developed early-onset gait abnormality associated
with early induction of PLP139–151-specific CD4� T cell re-
sponses, and the disease could be inhibited by prior induction
of tolerance to either the HI mimic epitope or the self
PLP139–151 epitope. Significantly, infection with this mimic-
expressing virus was able to induce disease, whereas priming
with the mimic epitope in adjuvant could not (52, 53). This
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suggests that innate immune signals provided by the virus are
important for disease induction. Subsequent studies showed
that the relatively mild disease induced by infection with HI-
TMEV could be exacerbated by giving mice a second dose of
virus 2 wk following initial infection (54); the increase in clin-
ical symptoms was associated with increases immune infiltrates
into the CNS. This supports the hypothesis that while a single
infection may not be sufficient to precipitate autoimmune de-
myelination, several infections over a person’s lifespan may
eventually lead to disease.

Murine hepatitis virus (MHV)

MHV, like TMEV, is an infection-induced murine model of
inflammatory CNS demyelination (55). In this model, mice are
inoculated i.c. or intranasally with the neurotropic strains, JHMV
or MHV-A59. CNS infection results in an influx of immune cells
that for the most part will clear the virus, although the virus does
persist in low amounts (56). In contrast to TMEV, susceptible
mice infected with MHV have a single major symptomatic episode
(ataxia, hindlimb paresis, paralysis) from which the majority will
recover (57). Demyelination begins about 1 wk postinfection and
peaks at week 3, after which lesion repair and remyelination occurs,
although new areas of demyelination can occur throughout the
lifetime of the mouse (58–60).

The exact mechanism of demyelination is somewhat contro-
versial, but there is extensive evidence suggesting that immune

responses are critical to this process. MHV infects and replicates
within oligodendrocytes, the myelin-synthesizing cells of the
CNS (61, 62), and it can be argued that oligodendrocyte dam-
age or death is the major mechanism of demyelination (63, 64).
However, mice exposed to immunosuppressive doses of irradi-
ation following JHM strain of mouse hepatitis virus infection
showed little demyelination despite the presence of virus in oli-
godendrocytes and reconstituting irradiated mice with spleno-
cytes from unirradiated-infected mice restored demyelination
(65). Similarly, T and B cell-deficient RAG1-deficient mice,
which were resistant to demyelination, developed histological
disease after adoptive transfer with splenocytes from MHV-in-
oculated mice, which involved the recruitment of activated
macrophages/microglia to sites of demyelination in the spinal
cord (66). Chemokine receptor knockout mice (CCR5�/�)
showed reduced demyelination that correlated with reduced
macrophage but not T cell infiltration into the CNS (67).
Taken together, these studies suggest that macrophages are pri-
marily responsible for myelin destruction but that T cells are
required to recruit macrophages into the CNS. Other studies
indicate that the presence of either CD8� or CD4� T cells, but
not both subsets at the same time, is required for demyelination.
Both �2-microglobulin- and MHC class II (I-Ab)-deficient
mice display demyelination after MHV infection (68–70).
However, in two reports, CD4-deficient mice showed less se-
vere disease than CD8-deficient mice, which again correlated

FIGURE 1. Cells of the immune system potentially involved in demyelination. APCs can take up Ag from a foreign source (such as an invading pathogen) or from
self-tissue (myelin or oligodendrocyte proteins) (no. 1). Ag is processed into peptides, which are loaded onto MHCs and presented to T cells via the TCR (no. 2).
Activated cytolytic T cells (Tc, activated by MHC class I on APCs) cause damage by direct lysis of the target (no. 3). Th cells (activated by MHC class II) release
inflammatory cytokines that are directly damaging to tissue and also activate monocytes/macrophages (M�) (no. 4). T cells may be specific for self-tissue (direct
damage), specific for a tissue-resident pathogen (bystander damage), or cross-reactive with pathogen and self-epitopes (molecular mimicry). Surface Ag (foreign or
self) is recognized by B cells via the BCR (no. 5). Upon receiving T cell help (no. 6), the B cell secretes Abs specific for self or dual specific for foreign and self-epitopes
(molecular mimicry) (no. 7). The binding of Ab to tissue may interfere with biological function (no. 8). Abs can also simultaneously bind to and activate M� via its
FcR (Fc), which mediate tissue damage (no. 9). Damaged tissue releases self-Ag, including new Ags not involved in the initial activation (no. 10), which are taken
up by APCs (epitope spread) (no. 11). This further propagates the self-reactive immune response and leads to additional tissue damage.
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with recruitment of macrophages to the CNS (71, 72). There is
no evidence of self-specific immunity in the CNS of MHV-in-
fected mice (73). Therefore, the primary mechanism of demy-
elination in murine MHV infection appears to be bystander
myelin destruction by the immune response initially recruited
to the CNS to control viral infection. The implication of this
model to human disease is that a pathogen may cause demyeli-
nation in an Ag-nonspecific manner if it is tropic for cells within
the nervous system.

Semliki Forest virus (SFV)

SFV is a neuroinvasive and neurotropic virus that infects CNS
neurons and oligodendrocytes (74, 75). In adult C57BL/6 and
BALB/c mice, the virus is for the most part cleared from the
CNS by day 6 postinfection. This is followed by demyelination
that peaks around day 14 and then wanes, with sporadic and
mild clinical symptoms (76, 77). SFV is thus an attractive
model of “monosymptomatic” MS, where patients experience a
single clinical episode (78).

The demyelination in SFV-infected mice is T cell mediated
because demyelination is not seen in nude or SCID mice (76,
79). In BALB/c mice, depletion of CD8�, but not CD4�, T
cells virtually abolished demyelinating lesions (80). This may
suggest that T cell lysis rather than cytokine secretion is respon-
sible for CNS pathology. Other studies in this model have
shown that Th1-type cytokines are involved in viral clearance
but not demyelination (81, 82). Although not definitively
proven, it is thought that demyelination is due to cytolytic dam-
age of virus-infected oligodendrocytes. Morphological changes
were shown in optical nerve oligodendrocytes at peak of disease
in BALB/c mice (83). In C57BL/6 mice, molecular mimicry
may also play a role in demyelination. Infected mice have pro-
liferative T cell responses to MBP (84), and Abs reactive to
MBP and myelin oligodendrocyte protein (MOG) (85). Com-
puter algorithms have uncovered homology between an epitope
in the SFV surface protein E2 and MOG18–32 (86). Mice
primed with either the E2 or MOG peptide develop an EAE-
like disease whose histopathology resembles that of mice in-
fected with SFV. It was concluded that the demyelinating le-
sions were due mainly to Ab responses, which were cross-
reactive between MOG and the SFV E2 protein.

Sindbis Virus (SV)

Although not extensively studied as a model of demyelination,
SV infection of mice provides further proof-of-principle that
pathogen infection can lead to autoimmune disease. The
AR339 strain replicates primarily in neurons of the brain and
spinal cord, and infection is rapidly controlled by the immune
response, with infectious virus becoming undetectable 7–8
days postinfection (87). In contrast to BALB/c mice, which
normally remain asymptomatic following infection, SJL mice
develop EAE-like paralysis starting at day 6 and continuing up
to 8 wk postinfection (88). Cyclophosphamide treatment ame-
liorates symptoms despite increasing CNS viral titers, indicat-
ing that the paralysis induced in SJL mice is due to the immune
response. CNS lymphocytes taken day 7 postinfection were
specific for SV but not for MBP (89). However, MBP-specific
T cells and Ab responses were detected in the periphery at 8 wk
postinfection, indicating that as in TMEV-IDD, anti-myelin
responses may arise due to bystander damage via epitope
spreading (88). The fact that symptoms occur rapidly following

SV infection indicates that, unlike TMEV-IDD, demyelina-
tion is not the primary cause of paralysis but may contribute to
chronic disease. CNS inflammation resolves by 2 wk postinfec-
tion in BALB/c mice but persists for a longer period of time and
is more severe in SJL mice (88, 89). CNS lymphocytes isolated
from SJL mice appear to be less prone to apoptosis and local
mechanisms of regulation than those from BALB/c mice (90).
Comparison of CNS lymphocytes from both strains of mice
showed that SJL mice had a higher percentage of CD4� T cells
during chronic infection, fewer NK cells, higher expression of
IL-10, and lower expression of IL-4 (89). The significance of this
differential profile to disease progression remains to be determined,
as does the true contribution of the anti-myelin response.

Conclusion
As outlined in Fig. 1, there are multiple pathways by which im-
mune-mediated demyelination can occur in humans. Each of
the murine models discussed above is different with respect to
the underlying mechanisms thought to be responsible for my-
elin destruction. Moreover, the different clinical manifestations
of each model reflect the spectrum of symptoms experienced by
patients. Although no individual system precisely models the
pathology and clinical course of human CNS disease, as a
whole, these models have led to significant advances in under-
standing disease mechanisms and for designing novel therapies.
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